Designing and Implementing a Data Science Solution on Azure (DP-100) [M-DP100]

Tijdsduur
Locatie
Online
Startdatum en plaats

Designing and Implementing a Data Science Solution on Azure (DP-100) [M-DP100]

Global Knowledge Belgium BV
Logo van Global Knowledge Belgium BV
Opleiderscore: starstarstar_halfstar_borderstar_border 4,5 Global Knowledge Belgium BV heeft een gemiddelde beoordeling van 4,5 (uit 2 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen

computer Online: VIRTUAL TRAINING CENTER
16 dec. 2024 tot 19 dec. 2024
computer Online: VIRTUAL TRAINING CENTER
6 jan. 2025 tot 9 jan. 2025
computer Online: VIRTUAL TRAINING CENTER
17 mar. 2025 tot 20 mar. 2025
computer Online: VIRTUAL TRAINING CENTER
7 apr. 2025 tot 10 apr. 2025
computer Online: VIRTUAL TRAINING CENTER
7 jul. 2025 tot 10 jul. 2025
computer Online: VIRTUAL TRAINING CENTER
15 sep. 2025 tot 18 sep. 2025
computer Online: VIRTUAL TRAINING CENTER
6 okt. 2025 tot 9 okt. 2025

Beschrijving

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

Exclusive - Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning.

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.

OBJECTIVES

Students will learn to:

  • Design a machine learning solution
  • Explore and configure the Azure Machine Learning workspace
  • Work with data in Azure Machine Learning
  • Work with compute in Azure Machine Learning
  • Experiment with Azure Machine Lea…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Microsoft Azure, Cloud Computing, VMware vCloud, Skype en Microsoft Windows Server 2019.

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

Exclusive - Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning.

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.

OBJECTIVES

Students will learn to:

  • Design a machine learning solution
  • Explore and configure the Azure Machine Learning workspace
  • Work with data in Azure Machine Learning
  • Work with compute in Azure Machine Learning
  • Experiment with Azure Machine Learning
  • Use notebooks for experimentation in Azure Machine Learning
  • Train models with scripts in Azure Machine Learning
  • Optimize model training with Azure Machine Learning
  • Manage and review models in Azure Machine Learning
  • Deploy and consume models with Azure Machine Learning

AUDIENCE

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

CERTIFICATION

Exam DP-100: Designing and Implementing a Data Science Solution on Azure

CONTENT

Module 1: Design a machine learning solution

  • There are many options on Azure to train and consume machine learning models. Which service best fits your scenario can depend on a myriad of factors. Learn how to identify important requirements and when to use which service when you want to use machine learning models.

Module 2: Explore and configure the Azure Machine Learning workspace

  • Throughout this learning path you explore and configure the Azure Machine Learning workspace. Learn how you can create a workspace and what you can do with it. Explore the various developer tools you can use to interact with the workspace. Configure the workspace for machine learning workloads by creating data assets and compute resources.

Module 3: Work with data in Azure Machine Learning

  • Learn how to work with data in Azure Machine Learning. Whether you want to access data in notebooks or scripts, you can read data directly, through datastores, or data assets.

Module 4: Work with compute in Azure Machine Learning

  • Learn how to work with compute targets and environments in the Azure Machine Learning workspace.

Module 5: Experiment with Azure Machine Learning

  • Learn how to find the best model with automated machine learning (AutoML) and by experimenting in notebooks.

Module 6: Use notebooks for experimentation in Azure Machine Learning

  • Learn how to use Azure Machine Learning notebooks for experimentation. Similar to Jupyter, the notebooks are ideal for exploring your data and developing a machine learning model.

Module 7: Train models with scripts in Azure Machine Learning

  • To prepare your machine learning workloads for production, you'll work with scripts. Learn how to train models with scripts in Azure Machine Learning.

Module 8: Optimize model training with Azure Machine Learning

  • Learn how to optimize model training in Azure Machine Learning by using scripts, jobs, components and pipelines.

Module 9: Manage and review models in Azure Machine Learning

  • Learn how to manage and review models in Azure Machine Learning by using MLflow to store your model files and using responsible AI features to evaluate your models.

Module 10: Deploy and consume models with Azure Machine Learning

  • Learn how to deploy a model to an endpoint. When you deploy a model, you can get real-time or batch predictions by calling the endpoint.

Blijf op de hoogte van nieuwe ervaringen

Er zijn nog geen ervaringen.

Deel je ervaring

Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.