Splunk for Analytics and Data Science (SADS)
Prerequisites
To be successful, students should have a solid understanding of the following courses:
- Intro to Splunk
- Using Fields (SUF)
- Scheduling Reports & Alerts
- Visualizations
- Working with Time (WWT)
- Statistical Processing (SSP)
- Comparing Values (SCV)
- Result Modification (SRM)
- Leveraging Lookups and Subsearches (LLS)
- Correlation Analysis (SCLAS)
- Search Under the Hood
- Intro to Knowledge Objects
- Creating Field Extractions (CFE)
- Search Optimization (SSO)
- !Exploring and Analyzing Data with Splunk (EADS)
Gedetailleerde cursusinhoud
Topic 1 – Analytics Workflow
- Define terms related to analytics and data science
- Describe the analytics workflow
- Describe common usage scenarios
- Navigate Splun…
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Prerequisites
To be successful, students should have a solid understanding of the following courses:
- Intro to Splunk
- Using Fields (SUF)
- Scheduling Reports & Alerts
- Visualizations
- Working with Time (WWT)
- Statistical Processing (SSP)
- Comparing Values (SCV)
- Result Modification (SRM)
- Leveraging Lookups and Subsearches (LLS)
- Correlation Analysis (SCLAS)
- Search Under the Hood
- Intro to Knowledge Objects
- Creating Field Extractions (CFE)
- Search Optimization (SSO)
- !Exploring and Analyzing Data with Splunk (EADS)
Gedetailleerde cursusinhoud
Topic 1 – Analytics Workflow
- Define terms related to analytics and data science
- Describe the analytics workflow
- Describe common usage scenarios
- Navigate Splunk Machine Learning Toolkit
Topic 2 – Training and Testing Models
- Split data for testing and training using the sample command
- Describe the fit and apply commands
- Use the score command to evaluate models
Topic 3 – Regression: Predict Numerical Values
- Differentiate predictions from estimates
- Identify prediction algorithms and assumptions
- Model numeric predictions in the MLTK and Splunk Enterprise
Topic 4 – Clean and Preprocess the Data
- Define preprocessing and describe its purpose
- Describe algorithms that preprocess data for use in models
- Use FieldSelector to choose relevant fields
- Use PCA and ICA to reduce dimensionality
- Normalize data with StandardScaler and RobustScaler
- Preprocess text using Imputer, NPR, TF-IDF, and HashingVectorizer
Topic 5 – Clustering
- Define Clustering
- Identify clustering methods, algorithms, and use cases
- Use Smart Clustering Assistant to cluster data
- Evaluate clusters using silhouette score
- Validate cluster coherence
- Describe clustering best practices
Topic 6 – Forecasting Fields
- Differentiate predictions from forecasts
- Use the Smart Forecasting Assistant
- Use the StateSpaceForecast algorithm
- Forecast multivariate data
- Account for periodicity in each time series
Topic 7 – Detect Anomalies
- Define anomaly detection and outliers
- Identify anomaly detection use cases
- Use Splunk Machine Learning Toolkit Smart Outlier Assistant
- Detect anomalies using the Density Function algorithm
- View results with the Distribution Plot visualization
Topic 8 – Classify: Predict Categorical Values
- Define key classification terms
- Identify when to use different classification algorithms
- Evaluate classifier tradeoffs
- Evaluate results of multiple algorithms
Fast Lane werkt met Nederlandse trainers die didactische vaardigheden combineren met veel practische ervaring.
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
