Developing Generative AI Applications on AWS (DGAIA) Online

Tijdsduur
Locatie
Online
Startdatum en plaats

Developing Generative AI Applications on AWS (DGAIA) Online

Fast Lane
Logo van Fast Lane
Opleiderscore: starstarstarstarstar_border 8 Fast Lane heeft een gemiddelde beoordeling van 8 (uit 2 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
computer Online: Online Training
29 jan. 2026 tot 30 jan. 2026
computer Online: Online Training
12 mar. 2026 tot 13 mar. 2026
Beschrijving

Prerequisites

We recommend that attendees of this course have:

  • Completed AWS Technical Essentials (AWSE)
  • Intermediate-level proficiency in Python

Who Should Attend

This course is intended for:

  • Software developers interested in using LLMs without fine-tuning

Gedetailleerde cursusinhoud

Day 1

Module 1: Introduction to Generative AI – Art of the Possible

  • Overview of ML
  • Basics of generative AI
  • Generative AI use cases
  • Generative AI in practice
  • Risks and benefits

Module 2: Planning a Generative AI Project

  • Generative AI fundamentals
  • Generative AI in practice
  • Generative AI context
  • Steps in planning a generative AI project
  • Risks and mitigation

Module 3: Getting Started with Amazon Bedroc…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Amazon Web Services (AWS), Cloud Computing, Kubernetes, Traffic management en Nginx.

Prerequisites

We recommend that attendees of this course have:

  • Completed AWS Technical Essentials (AWSE)
  • Intermediate-level proficiency in Python

Who Should Attend

This course is intended for:

  • Software developers interested in using LLMs without fine-tuning

Gedetailleerde cursusinhoud

Day 1

Module 1: Introduction to Generative AI – Art of the Possible

  • Overview of ML
  • Basics of generative AI
  • Generative AI use cases
  • Generative AI in practice
  • Risks and benefits

Module 2: Planning a Generative AI Project

  • Generative AI fundamentals
  • Generative AI in practice
  • Generative AI context
  • Steps in planning a generative AI project
  • Risks and mitigation

Module 3: Getting Started with Amazon Bedrock

  • Introduction to Amazon Bedrock
  • Architecture and use cases
  • How to use Amazon Bedrock
  • Demonstration: Setting up Bedrock access and using playgrounds

Module 4: Foundations of Prompt Engineering

  • Basics of foundation models
  • Fundamentals of prompt engineering
  • Basic prompt techniques
  • Advanced prompt techniques
  • Model-specific prompt techniques
  • Demonstration: Fine-tuning a basic text prompt
  • Addressing prompt misuses
  • Mitigating bias
  • Demonstration: Image bias mitigation

Day 2

Module 5: Amazon Bedrock Application Components

  • Overview of generative AI application components
  • Foundation models and the FM interface
  • Working with datasets and embeddings
  • Demonstration: Word embeddings
  • Additional application components
  • Retrieval Augmented Generation (RAG)
  • Model fine-tuning
  • Securing generative AI applications
  • Generative AI application architecture

Module 6: Amazon Bedrock Foundation Models

  • Introduction to Amazon Bedrock foundation models
  • Using Amazon Bedrock FMs for inference
  • Amazon Bedrock methods
  • Data protection and auditability
  • Lab: Invoke Bedrock model for text generation using zero-shot prompt

Module 7: LangChain

  • Optimizing LLM performance
  • Integrating AWS and LangChain
  • Using models with LangChain
  • Constructing prompts
  • Structuring documents with indexes
  • Storing and retrieving data with memory
  • Using chains to sequence components
  • Managing external resources with LangChain agents

Module 8: Architecture Patterns

  • Introduction to architecture patterns
  • Text summarization
  • Lab: Using Amazon Titan Text Premier to summarize text of small files
  • Lab: Summarize long texts with Amazon Titan
  • Question answering
  • Lab: Using Amazon Bedrock for question answering
  • Chatbot
  • Lab: Build a chatbot
  • Code generation
  • Lab: Using Amazon Bedrock models for code generation
  • LangChain and agents for Amazon Bedrock
  • Lab: Building conversational applications with the Converse API

Fast Lane werkt met Nederlandse trainers die didactische vaardigheden combineren met veel practische ervaring.

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Vraag nu gratis en vrijblijvend informatie aan:

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
We slaan je gegevens op, en delen ze met Fast Lane, om je via e-mail en evt. telefoon verder te helpen. Meer info vind je in ons privacybeleid.