Developing Generative AI Applications on AWS (DGAIA) Online
computer Online: Online Training 29 jan. 2026 tot 30 jan. 2026 |
computer Online: Online Training 12 mar. 2026 tot 13 mar. 2026 |
Prerequisites
We recommend that attendees of this course have:
- Completed AWS Technical Essentials (AWSE)
- Intermediate-level proficiency in Python
Who Should Attend
This course is intended for:
- Software developers interested in using LLMs without fine-tuning
Gedetailleerde cursusinhoud
Day 1
Module 1: Introduction to Generative AI – Art of the Possible
- Overview of ML
- Basics of generative AI
- Generative AI use cases
- Generative AI in practice
- Risks and benefits
Module 2: Planning a Generative AI Project
- Generative AI fundamentals
- Generative AI in practice
- Generative AI context
- Steps in planning a generative AI project
- Risks and mitigation
Module 3: Getting Started with Amazon Bedroc…
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Prerequisites
We recommend that attendees of this course have:
- Completed AWS Technical Essentials (AWSE)
- Intermediate-level proficiency in Python
Who Should Attend
This course is intended for:
- Software developers interested in using LLMs without fine-tuning
Gedetailleerde cursusinhoud
Day 1
Module 1: Introduction to Generative AI – Art of the Possible
- Overview of ML
- Basics of generative AI
- Generative AI use cases
- Generative AI in practice
- Risks and benefits
Module 2: Planning a Generative AI Project
- Generative AI fundamentals
- Generative AI in practice
- Generative AI context
- Steps in planning a generative AI project
- Risks and mitigation
Module 3: Getting Started with Amazon Bedrock
- Introduction to Amazon Bedrock
- Architecture and use cases
- How to use Amazon Bedrock
- Demonstration: Setting up Bedrock access and using playgrounds
Module 4: Foundations of Prompt Engineering
- Basics of foundation models
- Fundamentals of prompt engineering
- Basic prompt techniques
- Advanced prompt techniques
- Model-specific prompt techniques
- Demonstration: Fine-tuning a basic text prompt
- Addressing prompt misuses
- Mitigating bias
- Demonstration: Image bias mitigation
Day 2
Module 5: Amazon Bedrock Application Components
- Overview of generative AI application components
- Foundation models and the FM interface
- Working with datasets and embeddings
- Demonstration: Word embeddings
- Additional application components
- Retrieval Augmented Generation (RAG)
- Model fine-tuning
- Securing generative AI applications
- Generative AI application architecture
Module 6: Amazon Bedrock Foundation Models
- Introduction to Amazon Bedrock foundation models
- Using Amazon Bedrock FMs for inference
- Amazon Bedrock methods
- Data protection and auditability
- Lab: Invoke Bedrock model for text generation using zero-shot prompt
Module 7: LangChain
- Optimizing LLM performance
- Integrating AWS and LangChain
- Using models with LangChain
- Constructing prompts
- Structuring documents with indexes
- Storing and retrieving data with memory
- Using chains to sequence components
- Managing external resources with LangChain agents
Module 8: Architecture Patterns
- Introduction to architecture patterns
- Text summarization
- Lab: Using Amazon Titan Text Premier to summarize text of small files
- Lab: Summarize long texts with Amazon Titan
- Question answering
- Lab: Using Amazon Bedrock for question answering
- Chatbot
- Lab: Build a chatbot
- Code generation
- Lab: Using Amazon Bedrock models for code generation
- LangChain and agents for Amazon Bedrock
- Lab: Building conversational applications with the Converse API
Fast Lane werkt met Nederlandse trainers die didactische vaardigheden combineren met veel practische ervaring.
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
