Natural Language Processing NLP Masterclass - Deep Learning - Artificial Intelligence - Machine learning - Data Science
Beschrijving
Natural Language Processing (NLP).
Natural Language Processing Proficiency journey unfolds the foundations, concepts and advancements of Deep Learning and Neural Networks used in the field of Natural Language Processing in such a way that the learners get a comprehensive understanding of various neural network architectures used for Language processing tasks, their differences, challenges, and would be able to easily apply these learnings in their development work/research. This journey helps the learner in becoming proficient in building and training various neural networks for processing linguistic information including text analytics, text processing, sentiment analysis, language transla…
Veelgestelde vragen
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Natural Language Processing (NLP).
Natural Language Processing Proficiency journey unfolds the foundations, concepts and advancements of Deep Learning and Neural Networks used in the field of Natural Language Processing in such a way that the learners get a comprehensive understanding of various neural network architectures used for Language processing tasks, their differences, challenges, and would be able to easily apply these learnings in their development work/research. This journey helps the learner in becoming proficient in building and training various neural networks for processing linguistic information including text analytics, text processing, sentiment analysis, language translations, text summarizations, and various other tasks using popular frameworks and deploying them in the cloud and tune their performance.
This LearningKit with more than 22 hours of learning is divided into three tracks:
Course content
Track 1: Getting Started with Natural Language Processing
In this track, the focus will be on fundamentals of NLP, and
text mining and analytics.
Courses (8 hours +):
Natural Language Processing: Getting Started with NLP
Course: 40 Minutes
- Course Overview
- What is Natural Language Processing (NLP)
- Building Blocks of Language
- Syntactic and Semantic Analysis
- Various Tasks of NLP
- Heuristics-based NLP
- Machine Learning-based NLP
- Deep Learning-based NLP
- Challenges with NLP
- Tool Ecosystem of NLP
- NLP Use Cases in Industry
- Course Summary
Natural Language Processing: Linguistic Features Using NLTK & spaCy
Course: 1 Hour, 11 Minutes
- Course Overview
- Linguistic Features in Language Processing
- Introduction to Natural Language Toolkit (NLTK)
- Introduction to spaCy
- spaCy verses NLTK
- Using Linguistic Features in NLTK - Part 1
- Using Linguistic Features in NLTK - Part 2
- Types of spaCy Models3
- Using Linguistic Features in spaCy - Part 1
- Using Linguistic Features in spaCy - Part 2
- Using Linguistic Features in spaCy - Part 3
- Using Linguistic Features in spaCy - Part 4
- Course Summary
Text Mining and Analytics: Pattern Matching & Information Extraction
Course: 1 Hour, 52 Minutes
- Course Overview
- A Heuristic Approach to NLP
- WordNet Fundamentals
- Performing Synonyms, Synset, and WordNet Hierarchy
- Performing WordNet Relations and Semantic Similarity
- Working with SentiWordNet and Sentiment Analysis
- Working with Regex for Pattern Matching
- Investigating Python Regex Language
- Performing Basic NLTK Chunking and Regex
- Performing Advanced NLTK Chunking and Regex
- Modeling Movie Plot Sentiment Analysis with WordNet
- Course Summary
Text Mining and Analytics: Machine Learning for Natural Language Processing
Course: 2 Hours, 3 Minutes
- Course Overview
- NLP with Machine Learning (ML)
- Machine Learning Pipeline for NLP
- Feature Engineering for NLP
- Common ML Models Used in NLP
- Predicting Sarcasm in Text: Data Loading
- Predicting Sarcasm in Text: Data Analysis
- Predicting Sarcasm in Text: Linguistic Features
- Predicting Sarcasm in Text: Feature Engineering
- Predicting Sarcasm in Text: Model Building Part 1
- Predicting Sarcasm in Text: Model Building Part 2
- Predicting Sarcasm in Text: Model Tuning
- Course Summary
Text Mining and Analytics: Natural Language Processing Libraries
Course: 1 Hour, 59 Minutes
- Course Overview
- Introduction to Polyglot and TextBlob
- Introduction to Gensim and CoreNLP
- Using Basic Polyglot Features
- Using Multi-language Part of Speech Tagging
- Exploring Advanced PolyGlot Features
- Implementing Basic TextBlob Features
- Implementing Advanced TextBlob Features
- Exploring Basic Gensim Features
- Building bigram and trigram Using Gensim
- Building an LDA Model for Topic Modeling
- Exploring Advanced Gensim Features
- Course Summary
Text Mining and Analytics: Hotel Reviews Sentiment Analysis
Course: 1 Hour, 8 Minutes
- Course Overview
- Loading Hotel Reviews Data
- Installing Libraries and Data Loading
- Utilizing Exploratory Data Analysis (EDA)
- Exploring Linguistic Features of Data
- Building NLP Models
- Interpreting Model Tuning
- Deploying AutoML, PyCaret, and Streamlit Models
- NLP Project Best Practices
- NLP Project Challenges and Deployment Strategies
- Course Summary
Track 2: Natural Language Processing with Deep Learning
In this track, the focus will be on deep learning for NLP.
Courses (9 hours +)
Deep Learning for NLP: Introduction
Course: 1 Hour, 18 Minutes
- Course Overview
- NLP with Deep Learning
- NLP Use Cases in Deep Learning
- Basic Deep Learning Frameworks
- Intermediate Deep Learning Frameworks
- Advanced Deep Learning Frameworks
- Introduction to Sentiment Data
- Using Deep Learning Pipelines for Sentiment Data
- Sentiment Analysis - Overview & Data
- Sentiment Analysis - EDA
- Sentiment Analysis - Pre-processing
- Sentiment Analysis - Modeling & Evaluation
- Sentiment Analysis - Creating Accuracy & Loss Graphs
- Course Summary
Deep Learning for NLP: Neural Network Architectures
Course: 2 Hours, 30 Minutes
- Course Overview
- Basic Architecture of a Neural Network
- Multilayer Perceptron (MLP)
- Recurrent Neural Network (RNN) Architecture
- Challenges in RNN
- Applications of Neural Network-based Architecture
- Introducing the Product Reviews Data
- Loading Product Reviews Data into Google Colaboratory
- Understanding Product Reviews Data
- Exploring Product Reviews Data
- Pre-processing Product Reviews Data
- Applying Feature Engineering - Word Representation
- Creating Vector Representations Using Word2vec
- Averaging Feature Vectors
- Creating Word Embeddings with Word2Vec
- Constructing a RNN Model with Word2vec Embeddings
- Using GloVe Vectors
- Product Reviews Classification Using RNN
- Course Summary
Deep Learning for NLP: Memory-based Networks
Course: 1 Hour, 27 Minutes
- Course Overview
- Introduction to Memory-based Networks
- Gated Recurrent Unit (GRU) Architecture
- Long Short-term Memory (LSTM) Architecture
- Fall of RNN versus Rise of LSTM
- Variants of LSTM networks
- Product Review Data Preparation for Modeling
- Product Review Data Classification Using GRU
- Product Review Data Classification Using LSTM
- Product Review Data Classification Using Bi-LSTM
- Result Comparison between RNN, GRU, and LSTM
- Course Summary
Deep Learning for NLP: Transfer Learning
Course: 2 Hours, 10 Minutes
- Course Overview
- Introduction to Transfer Learning
- Advantages and Challenges of Transfer Learning
- Role of Language Modeling in Transfer Learning
- Introduction to Basic Transfer Learning Models
- Intermediate Transfer Learning Models
- Advance Transfer Learning Models
- Building ELMo Embedding Layer for Reviews
- Creating ELMo an Model for Product Reviews
- Classifying Product Reviews Using ELMo
- Reshaping Data for the ELMo Embedding Layer
- Building a Language Model Using ULMFiT
- Implementing the Language Model Using ULMFiT
- Classifying Product Reviews Using ULMFIT & FastText
- Performing Result Comparison
- Course Summary
Deep Learning for NLP: GitHub Bug Prediction Analysis
Course: 1 Hour, 56 Minutes
- Course Overview
- Case Study: Introduction to GitHub Bug Prediction
- Case Study: Loading Data & Libraries
- Case Study: Understanding the Data
- Case Study: Basic Exploratory Data Analysis
- Case Study: Punctuation & Stop Word Analysis
- Case study: Advanced Data Preprocessing
- Case Study: Data Cleaning
- Case Study: Exploring Vectorization
- Case Study: Exploring Embeddings
- Case Study: Applying Deep Learning Modeling
- Case Study: Performing Model Comparison
- Course Summary
Track 3: Advanced NLP
In this track, the focus will be on transformer models, BERT,
and GPT.
Courses (4 hours +)
Advanced NLP: Introduction to Transformer Models
Course: 41 Minutes
- Course Overview
- Sequence-to-Sequence (Seq2Seq) Models
- Attention in Seq2Seq Models
- Transformer Architecture
- Self-Attention Layer in Transformer Architecture
- Multi-head Attention in Transformer Architecture
- Transformer Encoder Block
- Transformer Decoder Block
- Transformer Model Architecture
- Industry Use Cases for Transformer Models
- Transformer Model Challenges
- Course Summary
Advanced NLP: Introduction to BERT
Course: 1 Hour, 14 Minutes
- Course Overview
- BERT Architecture
- Types of BERT Models
- Transfer Learning with BERT
- The Hugging Face Ecosystem
- Practicing Model Setup & Data Exploration with BERT
- Pre-processing Data with BERT
- Using BERT for Sentiment Classification Training
- Evaluating Models with BERT
- Best Practices for BERT
- BERT Challenges and Deployment Strategy
- Course Summary
Advanced NLP: Introduction to GPT
Course: 1 Hour, 10 Minutes
- Course Overview
- Language Models
- Generative Pre-trained Transformer (GPT)
- GPT Versions
- GPT-3 Model Architecture
- GPT-3 Few-Shot Learning
- GPT-3 Use Cases and Challenges
- Downloading the GPT Model
- Performing Greedy and Beam Searches in GPT
- Performing Top K and Top P Sampling in GPT
- Using Benchmark Prompts in GPT
- Course Summary
Advanced NLP: Language Translation Using Transformer Model
Course: 1 Hour, 29 Minutes
- Course Overview
- Machine Translation
- Using Single Sentence English to French Translation
- Setting up the Environment for Translation
- Performing EDA for Translation
- Using Tokens and Vectors for Translation
- Using Training and Validation Data for Translation
- Using Transformer Encoder for Translation
- Using Transformer Decoder for Translation
- Defining Attention and Embedding for Translation
- Assembling and Training the Model for Translation
- Using a Trained Model for Translation
- Course Summary
Track 4: NLP Case Studies
In this track, the focus will be on NLP case studies.
Courses (1 hours +)
NLP Case Studies: News Scraping Translation & Summarization
Course: 43 Minutes
- Course Overview
- Text Summarization Application
- Using Data Scraping
- Performing Translation into English
- Performing Text Summarization
- Creating a User Interface (UI) with Gradio
- Course Summary
NLP Case Studies: Article Text Comprehension & Question Answering
Course: 29 Minutes
- Course Overview
- The Q&A Pipeline and Text Comprehension
- Installing PyTorch and Transformers Libraries
- Importing a Text Comprehension Model
- Using a Text Comprehension Model
- Developing a Text Comprehension App Using Gradio
- Course Summary
Assessment:
• Final Exam: Natural Language Processing will test your knowledge
and application of the topics presented throughout the Aspire
Natural Language Processing Journey.
Specificaties
Taal: Engels
Kwalificaties van de Instructeur:
Gecertificeerd
Cursusformaat en Lengte: Lesvideo's met
ondertiteling, interactieve elementen en opdrachten en testen
Lesduur: 22 uur
Assesments: De assessment test uw kennis en
toepassingsvaardigheden van de onderwerpen uit het leertraject.
Deze is 365 dagen beschikbaar na activering.
Online Virtuele labs: Ontvang 12 maanden toegang
tot virtuele labs die overeenkomen met de traditionele
cursusconfiguratie. Actief voor 365 dagen na activering,
beschikbaarheid varieert per Training.
Online mentor: U heeft 24/7 toegang tot een online
mentor voor al uw specifieke technische vragen over het
studieonderwerp. De online mentor is 365 dagen beschikbaar na
activering, afhankelijk van de gekozen Learning Kit.
Voortgangsbewaking: Ja
Toegang tot Materiaal: 365 dagen
Technische Vereisten: Computer of mobiel apparaat,
Stabiele internetverbindingen Webbrowserzoals Chrome, Firefox,
Safari of Edge.
Support of Ondersteuning: Helpdesk en online
kennisbank 24/7
Certificering: Certificaat van deelname in PDF
formaat
Prijs en Kosten: Cursusprijs zonder extra
kosten
Annuleringsbeleid en Geld-Terug-Garantie: Wij
beoordelen dit per situatie
Award Winning E-learning: Ja
Tip! Zorg voor een rustige leeromgeving, tijd en
motivatie, audioapparatuur zoals een koptelefoon of luidsprekers
voor audio, accountinformatie zoals inloggegevens voor toegang tot
het e-learning platform.
Verrijk Uw Carrière met OEM's ICT Trainingen
Waarom kiezen voor
OEM?
Ervaring: Meer dan 20 jaar
expertise in ICT-trainingen.
Uitgebreide Selectie: Meer dan 1000 cursussen van
200 topmerken.
Hoge Tevredenheid: Beoordeeld met een 9.0 op
Springest.
Kwaliteitsgarantie: Gecertificeerde docenten en
award-winning E-learning.
Partnerschappen: Microsoft Partner, EC-Council
Partner, Certiport en Pearson VUE.
Blijf op de hoogte van nieuwe ervaringen
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.