Amazon SageMaker Studio for Data Scientists [GK110001]

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

Amazon SageMaker Studio for Data Scientists [GK110001]

Global Knowledge Belgium BV
Logo van Global Knowledge Belgium BV
Opleiderscore: starstarstar_halfstar_borderstar_border 4,5 Global Knowledge Belgium BV heeft een gemiddelde beoordeling van 4,5 (uit 2 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
place2-Brussel Center (Koloniënstraat 11)
4 feb. 2026 tot 6 feb. 2026
computer Online: VIRTUAL TRAINING CENTRE
4 feb. 2026 tot 6 feb. 2026
computer Online: VIRTUAL TRAINING CENTER
9 mar. 2026 tot 11 mar. 2026
computer Online: VIRTUAL TRAINING CENTER
13 apr. 2026 tot 15 apr. 2026
computer Online: VIRTUAL TRAINING CENTER
6 mei. 2026 tot 8 mei. 2026
computer Online: VIRTUAL TRAINING CENTER
15 jun. 2026 tot 17 jun. 2026
place2-Brussel Center (Koloniënstraat 11)
22 jul. 2026 tot 24 jul. 2026
computer Online: VIRTUAL TRAINING CENTRE
22 jul. 2026 tot 24 jul. 2026
computer Online: VIRTUAL TRAINING CENTER
7 sep. 2026 tot 9 sep. 2026
computer Online: VIRTUAL TRAINING CENTER
14 sep. 2026 tot 16 sep. 2026
computer Online: VIRTUAL TRAINING CENTER
7 okt. 2026 tot 9 okt. 2026
place4-Zoom Virtual Centre
9 dec. 2026 tot 11 dec. 2026
computer Online: VIRTUAL TRAINING CENTER
21 dec. 2026 tot 23 dec. 2026
Beschrijving

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models quickly. It does this by bringing together a broad set of capabilities purpose-built for ML. This course prepares experienced data scientists to use the tools that are a part of SageMaker Studio, including Amazon CodeWhisperer and Amazon CodeGuru Security scan extensions, to improve productivity at every step of the ML lifecycle.

Course level: Advanced

Duration: 3 days

 

Activities

This course includes presentations, hands-on labs, demonstrations, discussions, and a capstone project.

OBJECTIVES

In this course, you will learn to:

  • Accelerate the process to prepare, bu…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Amazon Web Services (AWS), Cloud Computing, Kubernetes, Traffic management en Nginx.

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

Amazon SageMaker Studio helps data scientists prepare, build, train, deploy, and monitor machine learning (ML) models quickly. It does this by bringing together a broad set of capabilities purpose-built for ML. This course prepares experienced data scientists to use the tools that are a part of SageMaker Studio, including Amazon CodeWhisperer and Amazon CodeGuru Security scan extensions, to improve productivity at every step of the ML lifecycle.

Course level: Advanced

Duration: 3 days

 

Activities

This course includes presentations, hands-on labs, demonstrations, discussions, and a capstone project.

OBJECTIVES

In this course, you will learn to:

  • Accelerate the process to prepare, build, train, deploy, and monitor ML solutions using Amazon SageMaker Studio

AUDIENCE

Experienced data scientists who are proficient in ML and deep learning fundamentals

CONTENT

Day 1

Module 1: Amazon SageMaker Studio Setup

  • JupyterLab Extensions in SageMaker Studio
  • Demonstration: SageMaker user interface demo

Module 2: Data Processing

  • Using SageMaker Data Wrangler for data processing
  • Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
  • Using Amazon EMR
  • Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
  • Using AWS Glue interactive sessions
  • Using SageMaker Processing with custom scripts
  • Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
  • SageMaker Feature Store
  • Hands-On Lab: Feature engineering using SageMaker Feature Store

Module 3: Model Development

  • SageMaker training jobs
  • Built-in algorithms
  • Bring your own script
  • Bring your own container
  • SageMaker Experiments
  • Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning
  • Models

Day 2

Module 3: Model Development (continued)

  • SageMaker Debugger
  • Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
  • Automatic model tuning
  • SageMaker Autopilot: Automated ML
  • Demonstration: SageMaker Autopilot
  • Bias detection
  • Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
  • SageMaker Jumpstart

Module 4: Deployment and Inference

  • SageMaker Model Registry
  • SageMaker Pipelines
  • Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
  • SageMaker model inference options
  • Scaling
  • Testing strategies, performance, and optimization
  • Hands-On Lab: Inferencing with SageMaker Studio

Module 5: Monitoring

  • Amazon SageMaker Model Monitor
  • Discussion: Case study
  • Demonstration: Model Monitoring

Day 3

Module 6: Managing SageMaker Studio Resources and Updates

  • Accrued cost and shutting down
  • Updates Capstone
  • Environment setup
  • Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
  • Challenge 2: Create feature groups in SageMaker Feature Store
  • Challenge 3: Perform and manage model training and tuning using SageMaker Experiments
  • (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
  • Challenge 5: Evaluate the model for bias using SageMaker Clarify
  • Challenge 6: Perform batch predictions using model endpoint
  • (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline
Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.