CAIP - Certified Artificial Intelligence Practitioner [GK840033]

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

CAIP - Certified Artificial Intelligence Practitioner [GK840033]

Global Knowledge Belgium BV
Logo van Global Knowledge Belgium BV
Opleiderscore: starstarstar_halfstar_borderstar_border 4,5 Global Knowledge Belgium BV heeft een gemiddelde beoordeling van 4,5 (uit 2 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
computer Online: VIRTUAL TRAINING CENTER
23 feb. 2026 tot 27 feb. 2026
place1-Mechelen (Battelsesteenweg 455-B)
16 mar. 2026 tot 20 mar. 2026
computer Online: VIRTUAL TRAINING CENTRE
16 mar. 2026 tot 20 mar. 2026
computer Online: VIRTUAL TRAINING CENTER
20 apr. 2026 tot 24 apr. 2026
computer Online: VIRTUAL TRAINING CENTER
18 mei. 2026 tot 22 mei. 2026
computer Online: VIRTUAL TRAINING CENTER
15 jun. 2026 tot 19 jun. 2026
place2-Brussel Center (Koloniënstraat 11)
27 jul. 2026 tot 31 jul. 2026
computer Online: VIRTUAL TRAINING CENTRE
27 jul. 2026 tot 31 jul. 2026
computer Online: VIRTUAL TRAINING CENTER
10 aug. 2026 tot 14 aug. 2026
computer Online: VIRTUAL TRAINING CENTER
21 sep. 2026 tot 25 sep. 2026
computer Online: VIRTUAL TRAINING CENTER
2 nov. 2026 tot 6 nov. 2026
place1-Mechelen (Battelsesteenweg 455-B)
16 nov. 2026 tot 20 nov. 2026
computer Online: VIRTUAL TRAINING CENTRE
16 nov. 2026 tot 20 nov. 2026
computer Online: VIRTUAL TRAINING CENTER
30 nov. 2026 tot 4 dec. 2026
Beschrijving

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

Artificial intelligence (AI) and machine learning (ML) have become essential parts of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, all while following a methodical workflow for developing data-driven solutions.

OBJECTIVES

In this course, you will develop AI solutions for business problems.

You will:

  • Solve a given business problem using AI and ML.
  • Prepare data for use in machine learning.
  • Train, evalu…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Artificial Intelligence, Blockchain, Machine learning, IBM Watson en Robotic process automation (RPA).

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

Artificial intelligence (AI) and machine learning (ML) have become essential parts of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, all while following a methodical workflow for developing data-driven solutions.

OBJECTIVES

In this course, you will develop AI solutions for business problems.

You will:

  • Solve a given business problem using AI and ML.
  • Prepare data for use in machine learning.
  • Train, evaluate, and tune a machine learning model.
  • Build linear regression models.
  • Build forecasting models.
  • Build classification models using logistic regression and k -nearest neighbor.
  • Build clustering models.
  • Build classification and regression models using decision trees and random forests.
  • Build classification and regression models using support-vector machines (SVMs).
  • Build artificial neural networks for deep learning.
  • Put machine learning models into operation using automated processes.
  • Maintain machine learning pipelines and models while they are in production

AUDIENCE

The skills covered in this course converge on four areas—software development, IT operations, applied math and statistics, and business analysis. Target students for this course should be looking to build upon their knowledge of the data science process so that they can apply AI systems, particularly machine learning models, to business problems.

So, the target student is likely a data science practitioner, software developer, or business analyst looking to expand their knowledge of machine learning algorithms and how they can help create intelligent decisionmaking products that bring value to the business.

A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming.

This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-210) certification.

CONTENT

Lesson 1: Solving Business Problems Using AI and ML

Topic A: Identify AI and ML Solutions for Business Problems
Topic B: Formulate a Machine Learning Problem
Topic C: Select Approaches to Machine Learning

Lesson 2: Preparing Data

Topic A: Collect Data
Topic B: Transform Data
Topic C: Engineer Features
Topic D: Work with Unstructured Data

Lesson 3: Training, Evaluating, and Tuning a Machine Learning Model

Topic A: Train a Machine Learning Model
Topic B: Evaluate and Tune a Machine Learning Model

Lesson 4: Building Linear Regression Models

Topic A: Build Regression Models Using Linear Algebra
Topic B: Build Regularized Linear Regression Models
Topic C: Build Iterative Linear Regression Models

Lesson 5: Building Forecasting Models

Topic A: Build Univariate Time Series Models
Topic B: Build Multivariate Time Series Models

Lesson 6: Building Classification Models Using Logistic Regression and k-Nearest Neighbor

Topic A: Train Binary Classification Models Using Logistic Regression
Topic B: Train Binary Classification Models Using k-Nearest Neighbor
Topic C: Train Multi-Class Classification Models
Topic D: Evaluate Classification Models
Topic E: Tune Classification Models

Lesson 7: Building Clustering Models

Topic A: Build k-Means Clustering Models
Topic B: Build Hierarchical Clustering Models

Lesson 8: Building Decision Trees and Random Forests

Topic A: Build Decision Tree Models
Topic B: Build Random Forest Models

Lesson 9: Building Support-Vector Machines

Topic A: Build SVM Models for Classification
Topic B: Build SVM Models for Regression

Lesson 10: Building Artificial Neural Networks

Topic A: Build Multi-Layer Perceptrons (MLP)
Topic B: Build Convolutional Neural Networks (CNN)
Topic C: Build Recurrent Neural Networks (RNN)

Lesson 11: Operationalizing Machine Learning Models

Topic A: Deploy Machine Learning Models
Topic B: Automate the Machine Learning Process with MLOps
Topic C: Integrate Models into Machine Learning Systems

Lesson 12: Maintaining Machine Learning Operations

Topic A: Secure Machine Learning Pipelines
Topic B: Maintain Models in Production

Appendix A: Mapping Course Content to CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-210)
Appendix B: Datasets Used in This Course

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.