Data Modeling [GK2711]

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

Data Modeling [GK2711]

Global Knowledge Belgium BV
Logo van Global Knowledge Belgium BV
Opleiderscore: starstarstar_halfstar_borderstar_border 4,5 Global Knowledge Belgium BV heeft een gemiddelde beoordeling van 4,5 (uit 2 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
computer Online: VIRTUAL TRAINING CENTER
18 feb. 2026 tot 20 feb. 2026
computer Online: VIRTUAL TRAINING CENTER
4 mar. 2026 tot 6 mar. 2026
place2-Brussel Center (Koloniënstraat 11)
22 apr. 2026 tot 24 apr. 2026
computer Online: VIRTUAL TRAINING CENTRE
22 apr. 2026 tot 24 apr. 2026
computer Online: VIRTUAL TRAINING CENTER
26 mei. 2026 tot 28 mei. 2026
computer Online: VIRTUAL TRAINING CENTER
1 jun. 2026 tot 3 jun. 2026
computer Online: VIRTUAL TRAINING CENTER
1 jul. 2026 tot 3 jul. 2026
place2-Brussel Center (Koloniënstraat 11)
5 aug. 2026 tot 7 aug. 2026
computer Online: VIRTUAL TRAINING CENTRE
5 aug. 2026 tot 7 aug. 2026
computer Online: VIRTUAL TRAINING CENTER
14 sep. 2026 tot 16 sep. 2026
Beschrijving

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

In this 3-day Data Modeling training you'll get hands-on practice modeling requirements through entity relationship diagrams, supertypes and subtypes, and attributive and associative entities. You will learn to use logical data modeling to work directly with business users to accurately define requirements.

Since a business analyst needs to accurately elicit, define, and document user requirements, understanding the users' needs is key to an analyst's success. By using logical data modeling, a business analyst can convey requirements in a way that can easily be validated, and doing so allows stakeholders to understand the requirements, business rules, and data management methods for…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Vmware Vsphere, VMware, VMware Horizon, VMware NSX en Data Analyse.

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

In this 3-day Data Modeling training you'll get hands-on practice modeling requirements through entity relationship diagrams, supertypes and subtypes, and attributive and associative entities. You will learn to use logical data modeling to work directly with business users to accurately define requirements.

Since a business analyst needs to accurately elicit, define, and document user requirements, understanding the users' needs is key to an analyst's success. By using logical data modeling, a business analyst can convey requirements in a way that can easily be validated, and doing so allows stakeholders to understand the requirements, business rules, and data management methods for any given project.

OBJECTIVES

  • How logical data models relate to requirements
  • Identifying entities and attributes
  • Determining relationships and business rules
  • Data integrity through normalization

AUDIENCE

  • Systems analysts
  • Business analysts
  • IT project managers
  • Associate project managers
  • Project managers
  • Project coordinators
  • Project analysts
  • Project leaders
  • Senior project manager
  • Team leaders
  • Product managers
  • Program managers

CONTENT

1. Introduction to Logical Data Modeling

  • Importance of logical data modeling in requirements
  • When to use logical data models
  • Relationship between logical and physical data model
  • Elements of a logical data model
  • Read a high-level data model
  • Data model prerequisites
  • Data model sources of information
  • Developing a logical data model

2. Project Context and Drivers

  • Importance of well-defined solution scope
  • Functional decomposition diagram
  • Context-level data flow diagram
  • Sources of requirements
    • Functional decomposition diagrams
    • Data flow diagrams
    • Use case models
    • Workflow models
    • Business rules
    • State diagrams
    • Class diagrams
    • Other documentation
  • Types of modeling projects
    • Transactional business systems
    • Business intelligence and data warehousing systems
    • Integration and consolidation of existing systems
    • Maintenance of existing systems
    • Enterprise analysis
    • Commercial off-the-shelf application

3. Conceptual Data Modeling

  • Discovering entities
  • Defining entities
  • Documenting an entity
  • Identifying attributes
  • Distinguishing between entities and attributes

4. Conceptual Data Modeling-Identifying Relationships and Business Rules

  • Model fundamental relationships
  • Cardinality of relationships
    • One-to-one
    • One-to-many
    • Many-to-many
  • Is the relationship mandatory or optional?
  • Naming the relationships

5. Identifying Attributes

  • Discover attributes for the subject area
  • Assign attributes to the appropriate entity
  • Name attributes using established naming conventions
  • Documenting attributes

6. Advanced Relationships

  • Modeling many-to-many relationships
  • Model multiple relationships between the same two entities
  • Model self-referencing relationships
  • Model ternary relationships
  • Identify redundant relationships

7. Completing the Logical Data Model

  • Use supertypes and subtypes to manage complexity
  • Use supertypes and subtypes to represent rules and constraints

8. Data Integrity Through Normalization

  • Normalize a logical data model
    • First normal form
    • Second normal form
    • Third normal form
  • Reasons for denormalization
  • Transactional vs. business intelligence applications

9. Verification and Validation

  • Verify the technical accuracy of a logical data model
  • Use CASE tools to assist in verification
  • Verify the logical data model using other models
    • Data flow diagram
    • CRUD matrix
Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.