Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267) [AI267]

Tijdsduur
Locatie
Op locatie
Startdatum en plaats

Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267) [AI267]

Global Knowledge Belgium BV
Logo van Global Knowledge Belgium BV
Opleiderscore: starstarstar_halfstar_borderstar_border 4,5 Global Knowledge Belgium BV heeft een gemiddelde beoordeling van 4,5 (uit 2 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
placeRedHat Virtual English
16 mar. 2026 tot 19 mar. 2026
placeRedHat Virtual French
23 mar. 2026 tot 26 mar. 2026
Beschrijving

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

An introduction to developing and deploying AI/ML applications on Red Hat OpenShift AI.

Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267) provides students with the fundamental knowledge about using Red Hat OpenShift for developing and deploying AI/ML applications. This course helps students build core skills for using Red Hat OpenShift AI to train, develop and deploy machine learning models through hands-on experience.

This course is based on Red Hat OpenShift ® 4.14, and Red Hat OpenShift AI 2.8.

Note: This course is offered as a 3 day in person class, a 4 day virtual class or is self-paced. Durations may vary based on the delivery. For full course detail…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Red Hat, Linux, SUSE Linux, Ansible en IT Beveiliging / Security.

Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.

OVERVIEW

An introduction to developing and deploying AI/ML applications on Red Hat OpenShift AI.

Developing and Deploying AI/ML Applications on Red Hat OpenShift AI (AI267) provides students with the fundamental knowledge about using Red Hat OpenShift for developing and deploying AI/ML applications. This course helps students build core skills for using Red Hat OpenShift AI to train, develop and deploy machine learning models through hands-on experience.

This course is based on Red Hat OpenShift ® 4.14, and Red Hat OpenShift AI 2.8.

Note: This course is offered as a 3 day in person class, a 4 day virtual class or is self-paced. Durations may vary based on the delivery. For full course details, scheduling, and pricing, select your location then “get started” on the right hand menu.

 

Course Content Summary

- Introduction to Red Hat OpenShift AI

- Data Science Projects

- Jupyter Notebooks

- Installing Red Hat OpenShift AI

- Managing Users and Resources

- Custom Notebook Images

- Introduction to Machine Learning

- Training Models

- Enhancing Model Training with RHOAI

- Introduction to Model Serving

- Model Serving  in Red Hat OpenShift AI

- Introduction to Workflow Automation

- Elyra Pipelines

- KubeFlow Pipelines

Virtual Learning

This interactive training can be taken from any location, your office or home and is delivered by a trainer. This training does not have any delegates in the class with the instructor, since all delegates are virtually connected. Virtual delegates do not travel to this course, Global Knowledge will send you all the information needed before the start of the course and you can test the logins.

OBJECTIVES

Impact on the Organization

Organizations collect and store vast amounts of information from multiple sources. With Red Hat OpenShift AI, organizations have a platform ready to analyze data, visualize trends and patterns, and predict future business outcomes by using machine learning and artificial intelligence algorithms.


Impact on the Individual

As a result of attending this course, you will understand the foundations of the Red Hat OpenShift AI architecture. You will be able to install Red Hat OpenShift AI, manage resource allocations, update components and manage users and their permissions. You will also be able to train, deploy and serve models, including how to use Red Hat OpenShift AI to apply best practices in machine learning and data science. Finally you will be able to create, run, manage and troubleshoot data science pipelines.

AUDIENCE

- Data scientists and AI practitioners who want to use Red Hat OpenShift AI to build and train ML models

- Developers who want to build and integrate AI/ML enabled applications

- MLOps engineers responsible for installing, configuring, deploying, and monitoring AI/ML applications on Red Hat OpenShift AI

NEXT STEP

Recommended next course or exam

  • Red Hat Certified Specialist in OpenShift AI Exam (EX267)

CONTENT

Introduction to Red Hat OpenShift AI

Identify the main features of Red Hat OpenShift AI, and describe the architecture and components of Red Hat AI.


Data Science Projects

Organize code and configuration by using data science projects, workbenches, and data connections


Jupyter Notebooks

Use Jupyter notebooks to execute and test code interactively


Installing Red Hat OpenShift AI

Installing Red Hat OpenShift AI by using the web console and the CLI, and managing Red Hat OpenShift AI components


Managing Users and Resources

Managing Red Hat OpenShift AI users, and resource allocation for Workbenches


Custom Notebook Images

Creating custom notebook images, and importing a custom notebook through the Red Hat OpenShift AI dashboard


Introduction to Machine Learning

Describe basic machine learning concepts, different types of machine learning, and machine learning workflows


Training Models

Train models by using default and custom workbenches


Enhancing Model Training with RHOAI

Use RHOAI to apply best practices in machine learning and data science


Introduction to Model Serving

Describe the concepts and components required to export, share and serve trained machine learning modelsI


Model Serving in Red Hat OpenShift AI

Serve trained machine learning models with OpenShift AI


Custom Model Servers

Deploy and serve machine learning models by using custom model serving runtimes


Introduction to Data Science Pipelines

Create, run, manage, and troubleshoot data science pipelines


Elyra Pipelines

Creating a Data Science Pipeline with Elyra


KubeFlow Pipelines

Creating a Data Science Pipeline with KubeFlow SDK

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
  • Vraag informatie aan over deze cursus. Je ontvangt vanaf dan ook een seintje wanneer iemand een ervaring deelt. Handige manier om jezelf eraan te herinneren dat je wilt blijven leren!
  • Bekijk gerelateerde producten mét ervaringen: Red Hat.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.