Leading AI and ML Projects [GK821855]
computer Online: VIRTUAL TRAINING CENTER 4 feb. 2026 tot 5 feb. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 12 feb. 2026 tot 13 feb. 2026 |
computer Online: VIRTUAL TRAINING CENTRE 12 feb. 2026 tot 13 feb. 2026 |
computer Online: VIRTUAL TRAINING CENTER 19 feb. 2026 tot 20 feb. 2026 |
computer Online: VIRTUAL TRAINING CENTER 26 feb. 2026 tot 27 feb. 2026 |
computer Online: VIRTUAL TRAINING CENTER 5 mar. 2026 tot 6 mar. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 9 mar. 2026 tot 10 mar. 2026 |
computer Online: VIRTUAL TRAINING CENTRE 9 mar. 2026 tot 10 mar. 2026 |
computer Online: VIRTUAL TRAINING CENTER 19 mar. 2026 tot 20 mar. 2026 |
computer Online: VIRTUAL TRAINING CENTER 26 mar. 2026 tot 27 mar. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 7 apr. 2026 tot 8 apr. 2026 |
computer Online: VIRTUAL TRAINING CENTRE 7 apr. 2026 tot 8 apr. 2026 |
computer Online: VIRTUAL TRAINING CENTER 9 apr. 2026 tot 10 apr. 2026 |
computer Online: VIRTUAL TRAINING CENTER 23 apr. 2026 tot 24 apr. 2026 |
computer Online: VIRTUAL TRAINING CENTER 27 apr. 2026 tot 28 apr. 2026 |
computer Online: VIRTUAL TRAINING CENTER 7 mei. 2026 tot 8 mei. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 11 mei. 2026 tot 12 mei. 2026 |
computer Online: VIRTUAL TRAINING CENTER 11 mei. 2026 tot 12 mei. 2026 |
computer Online: VIRTUAL TRAINING CENTRE 11 mei. 2026 tot 12 mei. 2026 |
computer Online: VIRTUAL TRAINING CENTER 28 mei. 2026 tot 29 mei. 2026 |
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
This 2-day course is designed for project managers who want to effectively lead artificial intelligence and machine learning initiatives.
Learners will identify the unique characteristics and challenges of AI/ML projects, understand common AI/ML terminology, evaluate and mitigate AI-specific risks, and lead and communicate effectively with cross-functional teams as well as key business stakeholders. Using MLOps principles to guide project planning and execution, at the end of this course you will be able to design comprehensive project plans that address the unique challenges of AI/ML development, assess the feasibility and resource requirements of proposed AI/ML initiatives, break …
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
This 2-day course is designed for project managers who want to effectively lead artificial intelligence and machine learning initiatives.
Learners will identify the unique characteristics and challenges of AI/ML projects, understand common AI/ML terminology, evaluate and mitigate AI-specific risks, and lead and communicate effectively with cross-functional teams as well as key business stakeholders. Using MLOps principles to guide project planning and execution, at the end of this course you will be able to design comprehensive project plans that address the unique challenges of AI/ML development, assess the feasibility and resource requirements of proposed AI/ML initiatives, break down complex AI/ML projects into manageable phases and deliverables, and critique project progress using appropriate technical and business metrics.
OBJECTIVES
- Identify the unique characteristics and challenges of AI/ML projects
- Apply appropriate methodologies for AI/ML project management
- Effectively scope and plan AI/ML initiatives
- Manage stakeholder expectations around AI/ML outcomes
- Lead cross-functional teams of data scientists, engineers, and domain experts
- Evaluate and mitigate AI-specific risks
- Monitor and measure AI/ML project success
- Describe the key roles and responsibilities within AI/ML project teams
- Explain the differences between traditional software and AI/ML project lifecycles
- Interpret common AI/ML terminology including neural networks, supervised/unsupervised learning, model training, and inference
- Implement appropriate project management methodologies for different types of AI/ML initiatives
- Demonstrate effective communication strategies with technical and non-technical stakeholders
- Use MLOps principles to guide project planning and execution
- Break down complex AI/ML projects into manageable phases and deliverables
- Differentiate between various types of AI/ML project risks and their potential impacts
- Examine data requirements and quality criteria for ML model development
- Assess the feasibility and resource requirements of proposed AI/ML initiatives
- Critique project progress using appropriate technical and business metrics
- Judge the effectiveness of risk mitigation strategies in AI/ML contexts
- Design comprehensive project plans that address the unique challenges of AI/ML development
- Develop stakeholder management strategies that account for AI/ML uncertainties
- Formulate data-driven decision-making frameworks for project governance
AUDIENCE
This 2-day course is designed for project managers who want to effectively lead artificial intelligence and machine learning initiatives. The course assumes foundational project management knowledge and focuses on the unique aspects of AI/ML project leadership.CONTENT
- Essential AI/ML Terminology and Concepts
- Understanding AI/ML Project Fundamentals
- AI/ML Project Lifecycle and Methodologies
- Scoping and Planning AI/ML Projects
- Building and Managing AI/ML Teams
- Risk Management in AI/ML Projects
- Stakeholder Management and Communication
- Monitoring and Measuring Success
- Prompt Engineering for Project Managers
- Deployment and Production Considerations
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
