MLOps Engineering on AWS [GK7395]
computer Online: VIRTUAL TRAINING CENTER 2 feb. 2026 tot 4 feb. 2026 |
computer Online: VIRTUAL TRAINING CENTER 23 feb. 2026 tot 25 feb. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 13 apr. 2026 tot 15 apr. 2026 |
computer Online: VIRTUAL TRAINING CENTRE 13 apr. 2026 tot 15 apr. 2026 |
computer Online: VIRTUAL TRAINING CENTER 5 mei. 2026 tot 7 mei. 2026 |
computer Online: VIRTUAL TRAINING CENTER 26 mei. 2026 tot 28 mei. 2026 |
computer Online: VIRTUAL TRAINING CENTER 17 aug. 2026 tot 19 aug. 2026 |
computer Online: VIRTUAL TRAINING CENTER 24 aug. 2026 tot 26 aug. 2026 |
place1-Mechelen (Battelsesteenweg 455-B) 2 sep. 2026 tot 4 sep. 2026 |
computer Online: VIRTUAL TRAINING CENTRE 2 sep. 2026 tot 4 sep. 2026 |
computer Online: VIRTUAL TRAINING CENTER 2 nov. 2026 tot 4 nov. 2026 |
computer Online: VIRTUAL TRAINING CENTER 16 nov. 2026 tot 18 nov. 2026 |
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Vrijwel iedere training die op een onze locaties worden getoond zijn ook te volgen vanaf huis via Virtual Classroom training. Dit kunt u bij uw inschrijving erbij vermelden dat u hiervoor kiest.
OVERVIEW
OBJECTIVES
In this course, you will learn to:
- Explain the benefits of MLOps
- Compare and contrast DevOps and MLOps
- Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
- Set up experimentation environments for MLOps with Amazon SageMaker
- Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
- Describe three options for creating a full CI/CD pipeline in an ML context
- Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
- Demonstrate how to monitor ML based solutions
- Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data
AUDIENCE
This course is intended for:
- MLOps engineers who want to productionize and monitor ML
models in the AWS cloud
- DevOps engineers who will be responsible for successfully
deploying and maintaining ML models in production
CONTENT
Day 1
Module 1: Introduction to MLOps
- Processes
- People
- Technology
- Security and governance
- MLOps maturity model
Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio
- Bringing MLOps to experimentation
- Setting up the ML experimentation environment
- Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
- Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
- Workbook: Initial MLOps
Module 3: Repeatable MLOps: Repositories
- Managing data for MLOps
- Version control of ML models
- Code repositories in ML
Module 4: Repeatable MLOps: Orchestration
- ML pipelines
- Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines
Day 2
Module 4: Repeatable MLOps: Orchestration (continued)
- End-to-end orchestration with AWS Step Functions
- Hands-On Lab: Automating a Workflow with Step Functions
- End-to-end orchestration with SageMaker Projects
- Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
- Using third-party tools for repeatability
- Demonstration: Exploring Human-in-the-Loop During Inference
- Governance and security
- Demonstration: Exploring Security Best Practices for SageMaker
- Workbook: Repeatable MLOps
Module 5: Reliable MLOps: Scaling and Testing
- Scaling and multi-account strategies
- Testing and traffic-shifting
- Demonstration: Using SageMaker Inference Recommender
- Hands-On Lab: Testing Model Variants
Day 3
Module 5: Reliable MLOps: Scaling and Testing (continued)
- Hands-On Lab: Shifting Traffic
- Workbook: Multi-account strategies
Module 6: Reliable MLOps: Monitoring
- The importance of monitoring in ML
- Hands-On Lab: Monitoring a Model for Data Drift
- Operations considerations for model monitoring
- Remediating problems identified by monitoring ML solutions
- Workbook: Reliable MLOps
- Hands-On Lab: Building and Troubleshooting an ML Pipeline
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
